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MODEL SELECTION  

• Our goal is to answer to the following questions: 

o Given a model, how can we conclude that it is “good enough” to use? 

o Having 2 or more “good enough” models, how to choose the “better” model? 

• There is a lot of literature on model selection but we will confine ourselves to a general framework.   

• What is “good enough”?  The answer depends on the raised problem.  

o Models are always simplified representations of reality. A model as complex as reality is useless. 

o We want to capture the main of data using a model as simple as possible (parsimony principle or 

Occam’s razor).  

o Technically speaking, there are two ways to analyze a model adequacy: Graphical representation and 

testing procedures. 
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REPRESENTATIONS OF THE DATA AND MODEL 

• Basic idea: To compare the collected data with the proposed model(s) 

• The proposed model can be represented by its distribution function or by its density (or probability) 

function 

• The collected data can be represented by  

o The empirical cumulative distribution function 

o An histogram 

o Observed values (discrete data) 

• Important point: Observed data can be censored and truncated. If so, we need to “correct” the 

distribution of the proposed model: ( ) *( )F x F x→ .  

For instance, if ~ ( )X F x  and the observed values are truncated at point t , the distribution function of 

the observed value is 

0

*( ) ( ) ( )

1 ( )

x t

F x F x F t
x t

F t

≤


= −
> −

. Remember that the density of the observed values is 

( )
*( )

1 ( )

f x
f x

F t
=

−
 for x t>  and that *( ) *( )

x

t
F x f u du=   
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GRAPHICAL COMPARISONS (see Loss Models) 

• How to choose an adequate graphical procedure for observed data? 

o Discrete versus continuous variables 

o Grouped versus individual data 

o Sample size (namely for histograms) 

• Graphical comparison 

o Plot the observed data and the proposed model on the same graph 

o Sometimes (namely when using the ecdf) it is more readable to plot 
*( ) ( ) ( | )

n
D x F x F x θ= −  

o Use a P-P plot  

• P-P plot: plot ( )
n

F x  against our parametric estimate of *( )F x . If the model fits well, the plotted points 

will be near the 45º line running from (0,0) to (1,1). Some authors refer that, as ( )( )
( / ( 1)

j
E F X j n= + , 

where  
( )jX  is the j-th order statistic in the sample, it is preferable to use 

*
( ) ( )

1 1
n n

n j
F x F x

n n
= =

+ +
 

(assuming no ties) instead of ( )
n

F x . 

Challenging question: Can you prove that ( )( )
( / ( 1)

j
E F X j n= + ? 
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• Example 16.1 and 16.2 (partially) – Consider Data Sets B and C. For this example and all that follow, in 

Data Set B replace the value 15743 with 3476 (to allow the graphs to fit comfortably on a page). Truncate 

Data Set B at 50 and Data Set C at 7500. Estimate the parameter of an exponential model for each data 

set. Plot the appropriate functions and comment on the quality of the fit of the model. Repeat this for 

Data Set B censored at 1000 (without any truncation). Example 16.2 → Plot ( )D x   

Case 1 – Data Set B with truncation at t=50. 

1 ( )/*( | ) ( | ) ( ) / (1 ( )) x t
f x f x x t f x F t e

θθ θ − − −= > = − = , x t>  

( )
19 19 19

1 1 1
( | *) ln *( | ) ln ( | ) ln(1 ( ) | ) lni

i ii i i

x t
f x f x F tθ θ θ θ θ

θ θ= = =

 
= = − − = − − + 

 
  x�  

2 2
( | *)

n x n nt
θ

θ θ θ
′ = − −x� ; 

2 2
( | *) 0

n x nt n
θ

θ θ θ
′ = ⇔ − =x�  then ˆ x tθ = − , i.e. ˆ 802.3158θ =  

50/802.3158 /802.3158

50/802.3158

ˆ ˆ( ) ( ) 50ˆ *( ) 1 exp         50
ˆ 802.31581 ( )

x
F x F t e e x

F x x
eF t

− −

−

− − − 
= = = − − > 

−  
 

As the sample size is small we use the ecdf.  
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The model seems to understate the distribution function at smaller values of x  . 
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*
F - For each observed value 

jx , 

calculate 
*( )

j
F x  

*
n

F  - The empirical values are given by 

( ) /n jF x j n= , 1,2, ,j n= �  
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Hypothesis Testing 

• More accurately, one can test the hypothesis 

H0: The data came from a population with the stated model 

H1: The data did not come from such population  

• The test statistic is usually a measure of how close are the data from the distribution specified in the null 

hypothesis 

• H0 can be: 

o A simple hypothesis, i.e. the null completely specifies the distribution. This is the most adequate 

situation for many testing procedures (critical values for the tests can be deduced) but rarely 

happens in practical situations; 

o A composite hypothesis, i.e. the null specifies a family of distributions and some unknowns 

parameters remain (and have to be estimated before computing the test).  

When we use the same sample to estimate unknown parameters and to compute the test, the test 

statistics tends to be smaller than it would be using pre-specified parameters since the parameter 

estimates are “optimized” (they are chosen to fit as closely as possible the data). For a given level of 

the type I error probability, we will under reject H0 unless some correction is made. 
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• Sometimes when we have a large sample we can randomly split our sample in 2 sub-samples and use one 

of them to estimate the parameters and the other sub-sample to compute the test. However this is not a 

usual procedure. 

• Among the many possible adjustment tests, we will discuss:  

o The Kolmogorov-Smirnov test; 

o The Anderson-Darling test (similar to KS approach but using a different test statistic – see Loss 

Models for a presentation of Anderson-Darling test) 

o The chi-square goodness of fit test.  
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Kolmogorov- Smirnov test 

• The original goal of the Kolmogorov-Smirnov test is to test 
0 0

: ( ) ( )H F x F x= , x−∞ < < ∞  against 

1 0
: ( ) ( )H F x F x≠  for some x ∈ℜ . 

• 
0
( )F x  is the distribution function of a continuous random variable and all the distribution function 

parameters are specified (H0 is a simple hypothesis).  

• The test statistic reflects the maximum distance between the empirical cumulative distribution function 

(which is a step function) and the distribution function (possibly corrected to allow for truncation and/or 

censoring), 
*( )F x . This test can only be applied when the observed data are not grouped (we need to 

evaluate the empirical distribution function as well as possible). 

• Let us define the test statistic as 
*sup ( ) ( )

n n
x

D F x F x
−∞< <∞

= − . Note that in Loss Models the test statistic is 

referred as 
*max ( ) ( )n n

x
D F x F x

−∞< <∞
= −  which is not, strictly speaking, correct.  

• The rejection region is obviously defined for n
D  greater than a critical value. 
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• To get the distribution of the test statistic we use 2 theorems (proofs are omitted as they are complex) 

o Theorem 1 – The distribution of the test statistic 
n

D  does not depend on 
0
( )F x . 

o Theorem 2 – For 0z ≥ , 
2 21 2

1
limPr( ) 1 2 ( 1)i i z

n in
n D z e

∞ − −

=→∞
≤ = − −  

o Tables with the usual critical values for 
n

D  are available for small values of n and with approximate 

values for larger n  (for 0.10α = , 1.22 / n ; for 0.05α = , 1.36 / n ; for 0.01α = , 1.63 / n ). We 

used a crude approximation given by (1 / 2) ln( / 2)α− ×   

Challenging question: Using theorem 2 obtain the approximation (1 / 2) ln( / 2)α− ×  

• To get the value of the test statistic we must observe that  *sup ( ) ( )n n
x

D F x F x
−∞< <∞

= −  has to be obtained 

at one of the observed values jx . Then sort the observed value and compute 

* * * *

( ) ( ) ( ) ( ) ( ) ( )
1,2,... 1,2,...

max ( ) ( ); ( ) ( ) max ( ) ( 1) / ;( / ) ( )n i n i n i i i i
i n i n

D F x F x F x F x F x i n i n F x
− −

= =
   = − − = − − −     

Remember that we are assuming that 
*( )F x  is continuous. 

• Using theorem 2 we can approximate (for large samples) the p-value of 
n

D . 
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•  Example 16.4 and 16.5– Calculate D for Example 16.1 (16.4) and complete the KS test (16.5) 

Since the data are grouped for case 2 we only can compute 
n

D  for cases 1 and 3 (we only discuss case 1). 

For both situations, H0 is a composite hypothesis and we need to estimate the parameter of the 

exponential distribution. The results are 

Case 1  

From example 16.1 we get  852.31579x =   50t =   ˆ 802.31579θ =    

0.133952
n

D =  (details on next slide) critical value ( 0.05α = ) 1.36 / 19 0.312≈ =   

Then we do not reject that the data came from an exponential distribution.  

 

3 comments:  

1) As we estimated one parameter, the test became conservative that is we under reject H0;  

2) When the ample size is small, it is difficult to get a rejection;  

3) Our critical value can be improved using a table of values of the KS test for small samples or using 

simulations techniques 
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i x_i F*(x_i) F_n(x_i)=i/n F_n(x_i-)=(i-1)/n D+ D- 

1 82 0.03910 0.05263 0.00000 0.01353 0.03910 

2 115 0.07782 0.10526 0.05263 0.02744 0.02519 

3 126 0.09038 0.15789 0.10526 0.06752 0.00000 

4 155 0.12267 0.21053 0.15789 0.08786 0.00000 

5 161 0.12921 0.26316 0.21053 0.13395 0.00000 

6 243 0.21381 0.31579 0.26316 0.10198 0.00000 

7 294 0.26223 0.36842 0.31579 0.10619 0.00000 

8 340 0.30334 0.42105 0.36842 0.11772 0.00000 

9 384 0.34051 0.47368 0.42105 0.13317 0.00000 

10 457 0.39787 0.52632 0.47368 0.12845 0.00000 

11 680 0.54398 0.57895 0.52632 0.03496 0.01767 

12 855 0.63335 0.63158 0.57895 0.00000 0.05440 

13 877 0.64327 0.68421 0.63158 0.04094 0.01169 

14 974 0.68389 0.73684 0.68421 0.05295 0.00000 

15 1193 0.75940 0.78947 0.73684 0.03007 0.02256 

16 1340 0.79968 0.84211 0.78947 0.04242 0.01021 

17 1884 0.89832 0.89474 0.84211 0.00000 0.05621 

18 2558 0.95610 0.94737 0.89474 0.00000 0.06137 

19 3476 0.98602 1.00000 0.94737 0.01398 0.03865 



 

13 

 

Using R 

> x=c(82,115,126,155,161,243,294,340,384,457,680,855,877,974,1193,1340,1884,2558,3476) 

> theta_hat=mean(x)-50 

> trunc_expon_dist=function(x,theta,t) { 

+   # x must be greater than or equal to t 

+   (exp(-t/theta)-exp(-x/theta))/exp(-t/theta) 

+   } 

>  

> ks.test(x,"trunc_expon_dist",theta=theta_hat,t=50) 

        One-sample Kolmogorov-Smirnov test 

data:  x  

D = 0.134, p-value = 0.841 

alternative hypothesis: two-sided  

or 

> y=trunc_expon_dist(x,theta_hat,50) 

> n=length(x); Fn=1:n/n; Fn_minus=Fn-1/n 

> D=max(abs(y-Fn),abs(y-Fn_minus)) 

> D 

[1] 0.1339522
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 Final comment to the Kolmogorov-Smirnov test: 

o The test can be adapted to one sided H1 hypothesis like 
1 0
: ( ) ( )H F x F x>  or 

1 0
: ( ) ( )H F x F x< .  

o When applied to discrete distributions (to avoid) the test is conservative and under reject H0. 

o The test can be adapted to test if 2 different samples came from the same population. This 

generalization is called the 2 samples Kolmogorov-Smirnov test.  
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Anderson-Darling test 

• Like the KS test, the goal of the Anderson-Darling test is to test 
0 0

: ( ) ( )H F x F x= , x−∞ < < ∞  against 

1 0
: ( ) ( )H F x F x≠  for some x ∈ℜ . 

• 
0
( )F x  is the distribution function of a continuous random variable where all parameters are known (H0 is 

a simple hypothesis).  

• To take into account that the observed data could have been truncated and/or censored we replace )(0 xF  

by )(* xF  (as we did before) and ∞<<∞− x  by uxt <<  where −∞=t  (or 0 if the random variable 

is non-negative) if there is no left truncation and +∞=u  if there is no right censoring. 

• The main difference between the KS and the Anderson-Darling tests is the way by which we evaluate the 

discrepancies between the model and the observed data. Now our test statistic will be given by 

( )
( ) −

−
=

u

t

n dxxf
xFxF

xFxF
nA )(*

)(*1)(*

)(*)(
2

2
     

We are evaluating the expected value of the weighted squared difference between ( )nF x  and *( )F x  
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• Comments: 

o We give more weight to the tails as ( )*( ) 1 *( )F x F x−  is smaller and consequently 

( )( )1/ *( ) 1 *( )F x F x−  is larger. 

o After doing some computation we get 

( ) ( ) ( )( )

( ) ( )

22

10

2

11

*( ) 1 ( ) ln 1 *( ) ln 1 *( )

( ) ln *( ) ln *( )

k

n j j jj

k

n j j jj

A n F u n F y F y F y

n F y F y F y

+=

+=

= − + − − − − +

+ −




 

Where the unique uncensored points are 0 1 1k kt y y y y u+= < < < < =�  

• The critical values for the Anderson-Darling test are dependent on the specific distribution that is being 

tested. Tabulated values and formulas have been published for a few specific distributions (normal, 

lognormal, exponential, Weibull or logistic). 
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Chi-square goodness-of-fit test 

• Unlike the KS and AD tests, the chi-square test can be used with discrete data. However it is an 

asymptotic test. 

• Basic idea: To compute a chi-square goodness of fit test we define a partition of the support of the 

proposed distribution in k  classes, { }kAAA ,,, 21 �  and we compare the expected number of observations 

in each class of the partition under the null hypothesis with the observed number in the sample. 

• Formally, let )|Pr( 0HAXp jj ∈=  and let 
j

N  be the number of observations that fall in class j (note that 

0>jp , 1
1

= =

k

j jp  and nN
k

j j = =1
).  

o Expected number, under the null, jj pnE = .  Observed number jj NO =   

o Test statistic: 
( )

 =

−
=

k

j
j

jj

E

EO

1

2

2χ  

In the early nineties, Karl Pearson showed that 
2χ  follows asymptotically a chi-square distribution with 

1−k  degrees of freedom. This result has been obtained for a multinomial distribution with no unknown 

parameters. 

The result can be used with large samples when they are no unknown parameters and the expected 

number of observations in each class is greater than a given threshold. 



 

18 

 

There are 2 alternative rules that are commonly used to establish this threshold: 

o More conservative – All the expected values are greater than or equal to 5, i.e. 5≥= jj pnE , 

kj ,,2,1 �= . When the sample is quite large we can increase this value to 10. 

o Less conservative – None of the expected values may be less than 1; No more than 20% of the 

expected values may be less than 5. 

• How to compute the test when the original data came from a continuous random variable with no 

unknown parameters but possibly left truncated at t and right censored at u? 

o Choose a set of 1−k  values, ucccct kk =<<<<= −110 �  and split the random variable’s domain 

into k  intervals ( )jj cc ;1− , kj ,,2,1 �= .  

o Compute the probability associated with each interval, )(*)(* 1−−= jjj cFcFp , and calculate the 

expected number of observations in each interval,  jj pnE = . 

o Compute the 
2χ  statistic. If the observed value of the statistic is greater than the adequate percentile 

of a 
2χ  distribution with 1k −  d.f.,  reject the null. 
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Comments:  

1. Note that we are testing jj ppH 00 :' =  and not the initial hypothesis that observations, X , came from a 

population with distribution )(* xF , that is, )(*~:0 xFXH . As '0H  can be deduced from 0H  (but the 

inverse is not true), the rejection of '0H  implies the rejection of 0H  but when we do not reject '0H  the 

conclusion that 0H  should not be rejected is less comfortable.  

2. If the set of intervals does not allow us to comply with the rules about the expected number of 

observation in each interval we must aggregate intervals. As we generally want as many intervals as 

possible to get the hypothesis '0H  as closed as possible with 0H  we generally use intervals with the 

same approximate probability. 

3. When the original data is a discrete random variable we choose the intervals as close as possible to the 

outcomes of the variable. Usually we need to aggregate values in the right tail of the distribution to 

meet the rules about the expected number of observations in each class.  
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• How to carry the test when they are p unknown parameters?  

o  Parameters estimation: The more adequate procedure is to use maximum likelihood estimators 

based on grouped data, that is, the likelihood function will be given by 

( ) ( )∏ = −−=
k

j

n

pjpjkp
jcFcFnnnL

1 1112121 ),,|(*),,|(*,,,|,,, θθθθθθθ ���� .  

As this procedure is, most of the time, annoying one can follow the usual maximum likelihood based 

on individual data, ( ) ∏ =
=

n

i pinp xfxxxL
1 12121 ),,|(*,,,|,,, θθθθθ ��� . 

o Once the parameters have been estimated )ˆ,,ˆ|(*)ˆ,,ˆ|(*ˆ 111 pjpjj cFcFp θθθθ �� −−= , and  

jj pnE ˆ= . The test statistic is 
( )

 =

−
=

k

j
j

jj

E

EO

1

2

2χ . 

o When the parameters have been estimated using minimum chi-square estimation, the test statistic 

follows asymptotically a chi-square distribution with k − 1 − p degrees of freedom. If the alternative 

estimation has been used the distribution will lie somewhere between a chi-square distribution with 

k − 1 − p and k − 1 degrees of freedom. The usual procedure is to consider k − 1 − p degrees of 

freedom. 
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Example 16.6 (16.7 3rd ed) – Perform the chi-square goodness-of-fit test for the exponential distribution for 

the continuing example. We will use the same intervals as in Loss Models. 

Case 1 – Data Set B truncated at 50 – The test is not adequate ( 19n = ). Moreover some classes should be 

merged (expected number of observations). Exercise: Do it and compute the p-value of the test 

( ) ( ) ( )( ) ( )( )( )1
ˆ ˆ/ /* * /

1 1

ˆ ˆ ˆ ˆ( | ) ( | ) exp / exp /j jc c t

j j j j j
E n F c F c n e e e n t c t c

θ θ θθ θ θ θ−− −

− −
= × − = × − × = × − − −  

Using individual data → ˆ 802.32θ =  (see example 16.1)     p-value=0.8436  4 df 

Using grouped data → ˆ 733.615
G

θ =  (numerical maximization using EXCEL)     p-value=0.8644  4 df 

    Individual data Grouped data 

j  
1j

c
−

 
j

c  
j

n  
j

E  
2χ  

j
E  

2χ  

1 50 150 3 2.2265 0.2687 2.4212 0.1384 

2 150 250 3 1.9656 0.5444 2.1126 0.3727 

3 250 500 4 3.9644 0.0003 4.1776 0.0076 

4 500 1000 4 5.0289 0.2105 5.0843 0.2313 

5 1000 2000 3 4.1427 0.3152 3.8727 0.1967 

6 2000 Inf 2 1.6719 0.0644 1.3316 0.3355 

  Sum   1.4035  1.2821 
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Example – Conduct an approximate goodness-of-fit test for the Poisson model assuming that we observed 

the first 2 columns of the following table 

k  k
n  Expected jQ  

0 85500 84279.2073 17.6833 

1 13000 14414.6945 138.8417 

2 1400 1232.7087 22.7032 

3+ 100 73.3896 9.6487 

Parameter estimation using grouped data for the last interval:  

( )
2

30
( ) ln ( | ) ln 1 (2 | )kk

n f k n Fθ θ θ
=

= + −�  → ˆ 0.171035θ =  

188.8788obs jQ Q= =   p-value=0.0000   

We reject the hypothesis that the data are Poisson distributed 
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LIKELIHOOD RATIO TEST 

• The likelihood ratio test provides an answer to the question “Is it more likely that the observations came 

from a population with distribution A than from a population with distribution B” when the distributions 

are nested.  

• Nested distributions: Distribution A and B are nested when one of them is a special case of the other 

that can be obtained by means of a set of linear constraints. For instance, an Exponential distribution 

with parameter θ  is nested in the Gamma family (the exponential distribution is obtained from the 

Gamma distribution when 1α = ) or a normal distribution with mean 3 is nested in the normal family of 

distributions. 

 

Before applying the likelihood ratio test to model selection let us present the test. 
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•  )|(~ θxfX    Our purpose is to test 00 : Θ∈θH  against 11 : Θ∈θH  where { }10 ,ΘΘ  is a partition of Θ . 

Note that θ  can be a vector. 

• Likelihood ratio – ( )nxxx ,,, 21 �λ  

The likelihood ratio, called λ  or ( )nxxx ,,, 21 �λ , is defined by ( )
),,,|(sup

),,,|(sup

,,,
21

21

21
0

n

n

n
xxxL

xxxL

xxx
�

�

�
θ

θ

λ

θ

θ

Θ∈

Θ∈
=  

where  ( )nxxxL ,,,| 21 �θ  is the likelihood function of θ  given the observed sample.  

• Comments:  

o The denominator is the likelihood evaluated at θ̂ , i.e. ˆ( )L θ , the likelihood evaluated at the 

maximum likelihood estimate; 

o The numerator follows the same approach but with a constraint: oΘ∈θ ; 

o As it is obvious we get 10 ≤≤ λ  (usually 10 ≤< λ ); 

o If we consider a random sample (before observation) we get ( )nXXX ,,, 21 �λ=Λ  instead of 

( )nxxx ,,, 21 �λ . As it is obvious, Λ  is a statistic and, consequently, follows a sampling distribution. 
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• Likelihood ratio test  

A likelihood ratio test is any test with a rejection region ( ) ( ){ }cxxxxxxW nn <= ,,,:,,, 2121 �� λ , with 

10 ≤≤ c . 

• Comments: 

o The definition of the rejection region is intuitive; 

o As with the Neyman-Pearson procedure we define α  and then we get c . To do so, it is necessary to 

know the sampling distribution of Λ  given 0H  (or the distribution of an equivalent statistic). 

• Asymptotic distribution of the likelihood ratio 

If some regularity conditions are fulfilled in the population, 
2

)(~ln2 rχ
�

Λ−  where r  is the difference 

between the number of free parameters specified by θ ∈Θ  and the number of free parameters specified 

by 0Θ∈θ . 

Now, as we are multiplying the ratio by (-2), the rejection region will be located in the right tail. 
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• Example 16.9 – You want to test the hypothesis that the population that produced Data Set B (using the 

original largest observation) has a mean that is other than 1200. Assume that the population has a 

gamma distribution and conduct the likelihood ratio test at a 5% significance level. Also, determine the p-

value. 

),(~ θαGX  αθµ =  1200:0 =µH  against 1200:1 ≠µH  

Denominator: 

1 /

( | , )
( )

x
x e

f x
α θ

α
α θ

θ α

− −

=
Γ

, 0>x , 0>α , 0θ >  

/1

1 1
( , | , , )

( )

ix
n

i
n i

x e
L x x

θα

α
α θ

θ α

−−

=
=

Γ
∏� ;  ( )

1

( ) ln ln ( ) ( 1)ln /
n

i i

i

x xα α θ α α θ
=

= − − Γ + − −�  

Using numerical optimization we get 556158.0ˆ =α , 138.2561ˆ =θ  and 293.162)ˆ,ˆ( −=θα�  
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Numerator: 

αθαθµ /120012001200 =⇔=⇔=  

1 /1200

( | , 1200)
1200 ( )

x
x e

f x
α α α

α

α
α µ

α

− −

= =
Γ

, 0>x , 0>α  

( )
1

( ) ln1200 ln ln ( ) ( 1)ln /1200
n

i i

i

x xα α α α α α α
=

= − + − Γ + − −�   

/1

1 1
( , | , , )

( )

ix
n

i
n i

x e
L x x

θα

α
α θ

θ α

−−

=
=

Γ
∏� ;  ( )

1

( ) ln ln ( ) ( 1)ln /
n

i i

i

x xα α θ α α θ
=

= − − Γ + − −�  

Using numerical optimization we get 549549.0ˆ
0 =α  and 466.162)ˆ( 0 −=α�  

The test 

Although we have a small sample we will use the asymptotic version of the test. The result should be 

read very carefully. 

 2ln 2( 162.466 162.293) 0.346λ− = − − + =  

0.5564p value− =    using a chi-square with 1 degree of freedom. 
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• Likelihood ratio test and nested models 

When 2 models are nested, one of them can be obtained from the other by mean of a set of linear 

constraints. We put in 0H  the constrained model and in 
1

H  the “free” model and then perform a 

likelihood ratio test. 

When the null is a limiting rather than a particular case of the alternative the test may still be used but 

with a more complex sampling distribution (mixture of chi-square distributions). However it is reasonable 

to still use the test provided that it is clearly understood that we are not performing a formal test. 

• Example – Let us use data from Example 16.9 to decide if is reasonable to use an exponential distribution 

instead of a Gamma distribution. 

),(~ θαGX   1:0 =αH  against 1:1 ≠αH  

Numerator: 

θθαθ /1)1,|( x
exf

−−== , 0>x , 0>θ  

/1 /

1 1
( | , , , 1) i

n x n n x

n i
L x x e e

θ θθ α θ θ−− − −

=
= = =∏�  

θθθ /ln)( xnn −−=�  4.1424ˆ
0 == xθ   23.165ln)ˆ( 0 −=−−= nxnθ�  
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Denominator (see Example 16.9) 

556158.0ˆ =α , 138.2561ˆ =θ  and 293.162)ˆ,ˆ( −=θα�  

The test 

Same comment about the sample size (see example 16.9) 

 873432.5)293.16223.165(2ln2 =+−−=− λ  

015371.0=− valuep    using a chi-square distribution with 1 degree of freedom. 
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SELECTING A MODEL 

In selecting a model 2 ideas should be present: 

• Parsimony – “the simpler the better” (for the same “quality”) 

• Restrict the set of possible models – if you try hundreds of models, some of them will fit the data by 

chance. 

Keeping in mind these 2 ideas, model selection is always a judgment-based approach (from my point of 

view). Some points that deserve consideration: 

• A clear understanding of the problem is necessary. For instance you have to be prepared to answer to 

questions like “It is more important to fit well the tail or to match the mode?” 

• How (using which kind of models) has this problem be solved before? Have these models proved well 

in the past? If not, why? 

• Some statistical procedures (namely those presented in this chapter) help to eliminate models.  

• When we compare nested models we can use the likelihood ratio test. 
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• Loss Models presents 5 criteria in a section called score-based approach. 

o Lowest value of the Kolmogorov-Smirnov test statistic 

o Lowest value of the Anderson-Darling test statistic 

o Lowest value of the chi-square goodness of fit statistic 

o Highest p-value for the chi-square goodness of fit statistic 

o Highest value of the likelihood function at its maximum 

• From my point of view it is not correct to use these criteria to select a model unless the p-values 

obtained are quite different (fourth criterion). Note that all these criteria, but the fourth, violate the 

parsimony principle as the number of estimated parameters is not considered. 
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• We can add 2 more criteria: the Aikaike and the Schwarz criteria (both are preferable to the 5th criterion) 

o Aikaike criterion: rLAIC 2ln2 +−=  where L  stands for the value of the likelihood function at its 

maximum and r  for the number of estimated parameters; the lesser the value of AIC the better. 

o Schwarz criterion: nrLSBC ln)2/(ln −=  where n is the sample size. Using this criterion presented 

in Loss Models, the greater the value of SBC, the better. To use a scale similar to that used with AIC, 

the Schwarz criterion is generally presented as SBCnrLBIC ×−=+−= 2lnln2 . Using the latter 

expression, the lesser the value of BIC the better. 

• Comment: 

The main difference between these two criteria is the way used to penalize the number of parameters. 

Using AIC a new parameter is relevant if it increases the log-likelihood by more than 1 and using the BIC 

by more than ln n .  
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• Example 16.11 – For the continuing example in this chapter, choose between the exponential and 

Weibull models for the data. 

Case 1 – Sample truncated at 50 with no censoring (19 observations) 

 K-S 

 

A-D 2χ  

(p-value) 

Loglik SBC Likelihood 

ratio test 

Exponential 0.1340 0.4292 1.4034 

(0.8436) 

-146.06 -147.35 0.7585 

(0.3838) 

Weibull 0.0887 0.1631 0.3615 

(0.9481) 

-145.68 -148.63  

Both distributions seem acceptable – K-S approximate critical value (5%)=0.3120 and A-D 

approximate critical value (5%)=2.492  – and then we use the parsimony principle or the likelihood 

ratio test to choose the exponential.   
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Appendix 01 – Proof that  ( )( )
( ) / ( 1)

j
E F X j n= +  

Let us assume that X  is a continuous random variable with distribution function )(xF  and density )(xf . 

As it is well known the density function of the j-th order statistic (for a sample of size n ) is given by 
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Appendix 02 – Kolmogorov-Smirnov – crude approximation  

Theorem 2 – For 0z ≥ , 
2 21 2

1
limPr( ) 1 2 ( 1)i i z

n in
n D z e

∞ − −

=→∞
≤ = − −  

• We will apply Theorem 2, using only the first term of the summation  

2 2 2
1 1 2 1 2limPr( ) 1 2( 1) 1 2z z

n
n

n D z e e
− − × −

→∞
≤ ≈ − − = −  

• 100 %α  significance level test means that we want z such that ( )Pr
n

D c α> = .  

Then  ( ) ( ) ( )
2 22 2Pr 1 Pr 1 1 2 2z z

n n
nD c n nD c n e eα − −= > = − ≤ ≈ − − =   

2
2 2 22 ln( / 2) 2 (1/ 2)ln( / 2) (1 / 2)ln( / 2)z

e z z zα α α α−≈ ⇔ ≈ − ⇔ ≈ − ⇔ ≈ −  since z is positive and 

then 
(1 / 2)ln( / 2)

(1 / 2)ln( / 2)c n c
n

α
α

−
≈ − ⇔ ≈  

 

 


